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Abstract. Single-axis trackers are key components to optimize utility-scale solar energy generation. As the
overall electricity production share of PV is globally increasing at a significant pace, profitability margins
narrowed and the industry is becoming more competitive. Ensuring high availability of all devices in a
photovoltaic (PV) power plant is crucial for healthy asset life. Historically, specific key performance indicators
(KPI) for single-axis trackers have been overlooked by both research and industry. This work proposes a KPI for
trackers, with two alternative methods. Over 2GWp of PV power plants have been analyzed, mostly located in
temperate climate zones. The median of results range from 66% to 88% availability, depending on data filtering
considerations. These results are substantial, and alarming. Industry claims sometimes even as high as 99%
availability, while the assessment of more than 2GWpPVpower plants tells us a different story. In addition, this
work highlights and discusses multiple issues regarding tracker data quality, especially related to angle datasets,
and identifies missing data as one of the main systematic issues when dealing with single-axis tracker data.

Keywords: Solar energy / photovoltaics / single-axis tracker / key performance indicator / availability /
performance optimization
1 Introduction

Solar energy has seen exponential growth over the past
decade, driven by geopolitical issues and a push for energy
security in major countries. Photovoltaics (PV) have the
one of the lowest Levelized Cost of Energy (LCOE) among
all energy technologies [1]. However, constraints in the
value chain and challenges in securing land have posed
significant obstacles for power plant project financing. As
technology has advanced, energy yield assessments and
equipment reliability have improved substantially. Yet, as
the market has evolved, competition has intensified, and
profitability has diminished in many segments of the solar
energy industry.

Even before the widespread adoption of bifacial
photovoltaic (PV) modules, single-axis tracker systems
were commonly used in power plants. Currently, trackers
are used in many new developed PV projects. In high
insolation conditions, PV plants equipped with trackers
can increase energy yield by around 20–35%, depending on
site conditions [2]. Inaddition,newtechnologiesandtracking
strategies have been introduced, with manufacturers
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claiming that tracking optimization strategies can enhance
energy generation, in relation to standard backtracking
operation, by up to 6%, depending onweather conditions [3–
5]. Despite these promising figures, validating such informa-
tion is challenging, especially when proprietary algorithms
are used to manage tracker fleets.

Although single-axis trackers are common in PV power
plants, and play a significant role in enhancing energy
generation, there is a research gap on utility-scale tracker
operation and reliability. Furthermore, single-axis trackers
are rarely included in industry contracts as part of
contractual guarantees. Contractual guarantees are mea-
surable commitments defined in contracts to ensure that
the plant meets specified performance requirements. For
instance, the most common key performance indicator
(KPI) is the Performance Ratio (PR) [6], used in
Engineering, Procurement, Construction (EPC) [7] con-
tracts with Asset Owners and Managers. Inverter avail-
ability is the primary KPI for Operation & Maintenance
(O&M) contracts [8]. The International Energy Agency
(IEA) PVPS Task 13 has recently issued a detailed report
on Technical and Economic KPIs [9], highlighting common
metrics and data quality control techniques. Notably, the
report only briefly mentioned utilizing a KPI to evaluate
single-axis trackers, without further description on its
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application. Similarly it is be mentioned as a best practice
in other industry reports [10], however, without entering in
detail about the metric.

Historically, trackers have not been included in
contractual KPIs as they were considered optimization
components, and manufacturers had no control over the
EPC process and installation. However, technological
advancements have made tracker operation more complex,
generally requiring a separate communication system
operated by the tracker manufacturer. Consequently,
O&M personnel are not permitted to debug algorithms
independently, nor is fully replacing a single-axis tracker
feasible. Additionally, tighter profit margins have led to
narrower safety margins for KPI guarantees, making any
equipment malfunction on site to have a larger impact on
potential bonuses or liabilities.

In summary, tracker system plays a substantial role in
PV plant performance directly affecting contractual
guarantees and generating liabilities for stakeholders
who lack control and expertise over tracker algorithms
and on-site troubleshooting capabilities. Therefore, it is
crucial that equipment on site can be de-coupled from
overall site performance and evaluated individually.

This paper proposes and evaluates a novel KPI
methodology to assess tracker operation. The methodology
aims to be simple and effective for use in contracts,
facilitating the quantitative and qualitative evaluation of
operational faults in single-axis trackers within utility-scale
PV power plants. Reliable tracker operation is essential for
the efficiency of existing PV power plants. Industry players
generally claim operational availability, or uptime, over
99% [11,12], although detailed results and methodologies
are not openly disclosed.

Operational issues in trackers are often embeddedwithin
other performance indicators, such as PR. It is crucial to
decouple tracker performance and evaluate it individually.
The industry requires such a KPI for future contractually
binding agreements. This KPI has the potential to provide a
better understanding of actual tracker losses that can be
recovered or optimized (e.g. tracking misalignments,
topography-related losses, etc.) and pure operational losses,
which depend on equipment reliability.
2 Material and methods

This section discusses the proposed methodology and
datasets utilized in this work.

2.1 Methodology

The proposed KPI is defined as Tracker Availability. The
objective of this metric is to evaluate the time-based
operation of the device, without any relation to its impact
on energy generation. Analogous to inverter time-based
availability [9], the reasoning is that the equipmentmust be
fully functional as much as possible, to facilitate energy
production regardless of sky conditions. As previously
mentioned, optimization tracking algorithms may be hard
to replicate; therefore, all PV plants used in this paper use a
classic algorithm, with optimization only on backtracking
period, which will be discussed later.

The KPI for single-axis tracker k will be:

Trk:Av:k ¼ TUseful � TDown

TUseful
ð1Þ

Where:
TUseful: Sum of all datapoints within the evaluated

period.
TDown: Sum of datapoints where single-axis tracker is

deemed unavailable within the evaluated period.
For a datapoint to be deemed unavailable:

juTrk: � uReferencej > uThreshold ð2Þ
Where:

uTrk: Tracker actual operation angle.
uReference: Reference angle.
uThreshold: Threshold angle.
Analogously, Tracker Availability for a PV plant with n

tracker is defined as:

PVPlantTrk:Av: ¼
Xn

k¼1
TUseful � TDown

� �
kXn

k¼1
TUseful

� �
k

: ð3Þ

Important considerations:

–
 Calculated only when Global plane-of-array (GPOA)
irradiance > 0 (W/m2).
–
 Wind stows, and other expected stows (i.e. maintenance)
are considered available datapoints.

The threshold angle is empirically defined as 5°, using
the available dataset. For plants with available informa-
tion on actual and target tracker angles, provided by the
manufacturer, it can be observed that the step angle,
analysing a 15min resolution dataset, is smaller than 0.5°.
Therefore, a safety margin of ten times the expected
operational behaviour is a fair assumption. Step angle is
the fixed angular increment by which a solar tracker
adjusts its position during each control action to approach
the target angle. A detailed sensitivity analysis is much
needed to identify the ideal threshold angle, however,
given the complexity of the task, it is left for future work.

Essentially, a single-axis tracker operates by following
the sun-path, which can be calculate through solar position
equations. As power plants have become more complex,
with thousands of concomitant operating trackers, man-
ufacturers have developed in-house methods to mitigate
energy loss due to self-shading by trackers, namely
backtracking. Such behaviour is not simple to replicate,
and the logic is generally not shared externally by tracker
companies. Thus, operators need to rely on manufacturer
data or machine learning techniques to replicate the
backtracking behaviour at a designated PV plant, posing
challenges for tracker operation evaluation during early-
stage operations.

Figure 1 illustrates periods of core tracking and
backtracking for a single-axis tracker in a PV power plant.
As observed, the trackers gradually misalign during



Fig. 1. Backtracking and Core tracking for a single-axis tracker.

Table 1. Information on methods utilized and approach utilized per tracker condition.

Method Backtracking Core Tracking

ALL Trk Compare Actual angle provided by
manufacturer vs Modelled angle Compare Actual angle provided by

manufacturer vs Modelled angleCore Trk Disregarded

Constituents are expressed as percent of seed wet weight.
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backtracking periods to avoid self-shading and improve
energy yield. During core tracking periods, all equipment
aligns to maximize solar energy utilization.

In this work, the authors will evaluate the metric, based
on two different methodologies. Outlined in Table 1.

Both methods will utilize single-axis tracker modelled
angle as reference, using PVLIB open-source model [13].
The inputs of the model are based on as-built information
from the PV Power plants. In some cases, tracker
manufacturers provide the tracker target angle information
within the SCADA system; however, to ensure fair
comparison throughout the dataset, a standard modelling
algorithm was selected as the approach. The actual tracker
angle is retrieved via the SCADA system, for each
individual tracker. The data is available in 1min and
15min resolutions, thus the highest available time
resolution was utilized for the calculations relating to each
PV power plant.

2.2 Dataset

The authors analyzed sixty-four PV power plants, mostly
installed in mediterranean and temperate climate regions.
Approximately 80% of these installation are installed in
European countries, with a combined installed DC
capacity of approximately 2.1 GWp. The datasets from
each power plant range from 6 months to 4.9 yr of data.
Figure 2 illustrates the overall capacity and data length of
the analyzed power plants. Due to confidentiality reasons,
the exact capacities and locations of the power plants
cannot be disclosed.
3 Results & discussion

The dataset was analyzed considering additional informa-
tion from status and error logs available for each device.
Thus, deviations due to preventive maintenance and safety
measures, such as stowing caused by high wind, were
considered as available behavior, see formula (1). As
mentioned previously, the objective is to evaluate the sole
operation of single-axis trackers, regardless of sky con-
ditions or energy contribution. Therefore, the following
results assume that missing data for actual tracker angles
relates to equipment unavailability. The caveats of this
assumption and its impact on the results will be discussed
in detail in section 3.2.

The plot below illustrates the results regarding both
Core & ALL Tracker conditions. From the initial dataset
analyzed, fifteen out of the original PV power plants were
considered to have insufficient data quality for the analysis.
The reasons for poor data vary and include:

–
 Significant amount of stalling and missing data;

–
 Inconsistent scaling and offsets from the data coming
from the SCADA system;
–
 Deviation between tracker angles and generation profile;

–
 Mismatch between available data and provided as-built
inputs to be used in tracker angle modelling.

As a matter of fact, the authors have identified data
quality to be one of the main challenges when working with
utility-scale single-axis tracker datasets; section 3.1 will
address in detail issues encountered and related difficulties
in addressing these data anomalies.



Fig. 2. Treemap sized by installed capacity per PV power plant, in MWp, where smallest one is rounded to the nearest 2. Colormap
illustrating dataset length, in years, per PV plant.
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Figure 3 summarizes the distribution of results observed
throughout the analyzed power plants. The ALL Trk has
availability distributed more evenly throughout the assets,
without a clear concentration in any of the bins. The highest
availabilitywas96%,whether the lowest is at 22%,havingan
average and median distribution of 64% and 66%,
respectively.

Furthermore, the Core Trk results highlight a higher
uptime, being the 85%–90% availability bin the one with
larger number of plants, and the distribution has an
average and median of 76% and 83%, respectively. There’s
a +17 percentage point difference between Core and ALL
Trk medians, demonstrating aspects such as more robust
operation at key sunlight hours, but also intrinsic
difficulties in modelling backtracking. Core Trk has only
two plants above 99%, illustrating a systematically poor
availability of single-axis tracker throughout the power
plants, which may significantly impact energy generation.

As can be observed, the ALL Trk has systematically
lower availability than the Core Trk, mainly due to the
conditions discussed in the following paragraphs.

Firstly, data investigation shows that early morning
tends to represent poorer operation conditions, as
unidentified operational issue can be carried overnight
and unstable connections may impact equipment turning
on. As a result, these events will only be observed by O&M
teams during the early hours of the day, who may reboot
devices or replace tracker control units; thereby resolving
minor operational issues. Consequently, this minimizes the
availability impact during the core tracking period, where
devices remain unavailable only if the problem is not easily
solvable and requires expert troubleshooting. Complex
issues, which may refer to interconnection between devices
and data stream limitations, are generally handled by the
single-axis tracker manufacturers. In modern PV power
plants, these manufacturers are responsible for ensuring
that the trackers function smoothly, as on-site O&M teams
commonly do not have access nor expertise to debug
tracker control systems and related issues.

Another aspect refers to the backtracking period.
The algorithms and software utilized in this period are
generally proprietary, and utilize spatial information to
calculate the tracker position, taking into account
topographic conditions and related positions between
devices. Thus, the utilization of PVLib’s algorithm, even
ensuring correct information on ground coverage ratio
(GCR) and pitch conditions, will not identically replicate
the real behavior of trackers in a PV power plant, as this
depends on proprietary strategies. However, due to the
complexity of these strategies, the control logic may be
more prone to errors. This makes it challenging for other
stakeholders to determine whether the tracker is
functioning as expected without physical proof. Conse-
quently, the higher figures, in ALL Trk, can be partially
attributed to modeling errors stemming from the lack of
transparency in the control logic.



Fig. 4. Example of scaling issue in single-axis tracker actual
angle.

Fig. 5. Example of wrong offset applied to single-axis tracker
angle.

Fig. 3. Histogramof trackeravailability results for bothALLandCoreTracking results. Subplots have samescale in left-hand sidey-axis.
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3.1 Data quality

Throughout this work, the authors have analyzed hundreds
of thousands of single-axis trackers datasets, representing a
significant volume of data. In fact, single-axis trackers are
one of the most numerous components in utility-scale PV
power plants. Tracker data quality, mainly inclination
angles and logs, are not the object of much focus in research
nor in the industry; as O&M and Asset Mangers commonly
would have KPI guarantees tied to inverter, or more
recently, string availability.

Tracker angles are the most effective way of identifying
tracker stows, however, it is sometimes necessary to utilize
power profiles to identify stow conditions [14]. It is
technically challenging to use power profiles to identify
malfunctions during overcast and cloudy conditions. In this
section, the authors discuss data quality issues encountered,
and potential routes to facilitate data quality automation.
The Figure 4 demonstrate recurrent issues encountered
in tracker datasets across the power plants. Figure 5 refers to
a wrong offset being applied to the original data, while
Figure 4 relates towrong scaling of the actual tracker angles.
Whether the problem arises from actual wrong data or
incorrect mapping of the data signals in the SCADA
platform, these simplemistakeshighlightacommonproblem
when automating analysis for tracker datasets. Since these
datasets are generally overseenby key stakeholders, a simple
correctivemeasuremaybe postponed,making data curation
a cumbersome task and potentially unfeasible if these effects
are random or inconsistent.

Data quality does not depend only on single-axis
tracker manufacturer data streaming set-up or to SCADA
systems configurations. Figure 6 highlights a case where
tracker’s maximum and minimum angles, available in as-
built documentation, represented by the Modelled Angle,



Fig. 6. Example of wrong maximum and minimum angle
information.

Fig. 7. Example of actual angle time shift between subsequential
years.
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do not match the actual path performed by the tracker.
The analysed dataset showed multiples of such case. The
root-cause can vary, ranging from incorrect as-built
information, alternative backtracking strategies, and
incorrect inputs provided at the single-axis tracker
configuration level.

Another interesting example lies in Figure 7. From left
to right, it represents two subsequent years for the same
single-axis tracker. A minor leftward shift in the actual
angle curve can be observed from 1 yr to the next. Although
the investigation was not conclusive, the authors suggest
this may be caused by specific tracker geolocation, however
other sources of tracker malfunctions may be possible, e.g.
calibration drift, mechanical wear, etc. Industry practice
generally uses plant-level latitude and longitude informa-
tion, as device-level information is rarely available and
difficult to validate. Therefore, inconsistencies in the model
input affect the generatedmodel, which does not accurately
reflect the inputs within the tracker configurations.

Using modelled tracker angle is the most effective way to
identify whether a specific single-axis tracker is following its
path. However, as shown in this section, the data can be
inconsistent, raising concerns of the veracity of the informa-
tion. Therefore, coupling this method with alternative ones
may mitigate the existence of both false positives and false
negatives in tracker availability. Due to the nature of PV
plants electrical and mechanical topology, string intercom-
parison is a simple but effective way of veryfying whether the
equipment was functional. Figure 8 highlights strings all
connected to the same inverter, showingtwounderperforming
stringsconnectedtotherespective tracker.Ontheotherhand,
it is important toemphasize that thismethod,orevenutilizing
inverter’s power profile, is not effective at overcast or cloudy
sky conditions. Thus, being significantly difficult to prove the
tracker status without a physical evidence.

3.2 Missing data & related issues

Missing data has been identified as one of the main issues
when analyzing tracker data, based on the findings from
over 2 GWp of installed PV power plants. The missing data
was identified through communication gaps, where data is
not collected and is lost, as well by stalled or frozen data
being retrieved in the SCADA system. PV plants use a
range of communication interconnections, such as physical
connections (i.e. cable) and wireless. The issues can be
traced back to several reasons, such as poorly dimensioned
systems and significant signal interference within the
power plant. Although identifying root causes is important,
this paper will not focus on this aspect, as it is an
engineering problem and generally project specific.

This section will discuss how the lack of data may
impact Tracker Availability KPI. It is important to
highlight that communication gaps do not necessarily
indicate tracker unavailability or equipment downtime.
However, discretizing what happened may not be viable
without physical evidence. Hence assuming unavailability
may be conservative but still a reasonable assumption,
considering the lack of evidence through alternative
analysis routes.

Figure 9 shows the distribution of missing data
throughout the analyzed dataset. It can be inferred that
the majority of PV plants have up to 15% of data missing,
where the plant with least lost data is 0.5%, while the one
with most missing data reaches 70%, at ALL Trk period;
besides the median of distribution is at 11% and 5%, and
averages of 18% and 9% for ALL & Core tracking,
respectively. This skewness in the distribution illustrates
that some power plants are more prone to issues than
others. On the other hand, even though the extreme cases
exist, it is important to notice that a significant portion of
the power plants have data losses around 10%. Although
the related energy impact of the communication gaps will
depend heavily on sky conditions, the referred figures are
quite remarkable, especially when compared to other
equipment such as inverters, where contractual availability
is generally around 99%, and substantial communication
gaps could create significant manual work for O&M teams
trying to prove the equipment was operational. Thus, even
though missing data is expected in utility-scale environ-
ments, due to its unpredictability, the figures found in this
work highlight a systematic problem in transferring data
from single-axis tracker to monitoring systems.

On Tracker Availability KPI, the authors re-visit the
initial results, now considering missing data as if the
equipment was available. The purpose of this exercise is to
illustrate possible best- and worst-case scenario for single-
axis tracker availability, as observed in the presented



Fig. 8. Example of single-axis tracker unavailable, or stowed, and its related string-level generation profile.

Fig. 9. Distribution of missing data for both Core and ALL Trk instances. Subplots have same scale in left-hand side y-axis.
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figures the amount of missing data is significative and
simply disregarding such values would have created a bias
in the KPI results. The Figure 10 illustrates the
distribution of results. The median of the distributionshifts
from 66% to 87%, and from 83% to 89% inAll Trk andCore
Trk scenario respectively; while the average shifts from
64% to 83%, and from 76% to 85% in All Trk and Core Trk
scenario respectively. Thus, approximately 21 percentual
point (p.p.). and 19p.p. of median and average increase for
ALL Trk; analogously 6p.p. and 9p.p. increase for Core
Trk. Therefore, it can be inferred that missing data is an
important driver of initial poor tracker availability
performance, and especially recurrent and problematic
during backtracking, evidenced by the high values in the
ALL Trk KPI. The causes of more frequent missing data
during backtracking are highly site-specific; however,
they can be linked to two main situations. One reason is
that issues occurring during early operation tend to be
flagged by the on-site O&M team and resolved promptly,
ensuring full operational conditions during the core
tracking phase. In addition, the natural behavior of the
system during device wake-up and shutdown tends to be
more problematic, leading to more instances in which
data is lost.



Fig. 10. Tracker availability distribution, in the upper plots consideringmissing data as unavailable, as in previous figure. In the lower
plot consideringmissing data as devices available The plots consider bothALL andCore Tracker instances. Subplots have same scale in
left-hand side y-axis.
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This section shows how influential is missing data in the
calculated KPI, changing results by many percentual
points. However, it is important to note that the median, or
average, of the distribution is still far from 99% tracker
availability, which would be a figure analogous to the
practice for inverter availability guarantees. In addition,
only five plants performed above the threshold for ALLTrk
conditions, representing only 10% of the analyzed power
plants. This information supports the discussion proposed
in this paper, highlighting not only the data quality
challenges for trackers but also, based on the analyzed
data, an opportunity for operational optimization of PV
power plants. Single-axis trackers are not operationally
reaching their full potential.

4 Conclusion

In our knowledge, this is one of the first studies to analyze
such a vast number of PV power plants with sole focus on
single-axis tracker operations. Assessing over 2 GWp of
data has provided insights not only single-axis tracker
availability (or uptime), but also on data quality and
related limitations.

The findings highlight the importance of single-axis
trackers in modern utility-scale PV power plants. Despite
significant advancements in the industry over the past few
years, there remains a substantial information gap
regarding the large-scale operation of trackers. This gap
encompasses not only their actual availability but also data
curation and quality control. Tracker systems may have
been historically ignored by researchers and industry, due
to the high volume of data, and smaller energy contribution
than devices that directly generate electricity (e.g.
inverters, strings modules).However, in an increasingly
competitive industry, accurate information on equipment
availability is crucial for feeding simulation models and
meeting contractual guarantees.

This work aims to generate awareness of the relevance
of such equipment in modern utility-scale PV power
plants. Even though the industry has advanced signifi-
cantly in recent years, there is still a significant
information gap in large-scale operation of trackers, not
only referring to their actual availability but also data
curation and quality control. This is a very important
topic. As the industry becomes more competitive, and a
key contributor to the energy mix in many countries, its
players require accurate information on equipment
availability to feed into simulation models and contractu-
al guarantees. A broader communication of issues and
lessons learned between stakeholders may optimize energy
generation and collaborate to a more competitive and
transparent industry.

Glossary

Nomenclature
Definition
Single-Axis Tracker
A device that follows the sun’s path to maximize solar energy
capture by adjusting its angle.
PV (Photovoltaic)
Technology that converts sunlight directly into electricity using
semiconducting materials.
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LCOE (Levelized Cost of Energy)
Ameasure of the average net present cost of electricity generation
for a generating plant over its lifetime.
KPI (Key Performance Indicator)
Ameasurable value that demonstrates how effectively a company
is achieving key business objectives.
PR (Performance Ratio)
A metric used to evaluate the efficiency of a PV plant by
comparing the actual energy output to the theoretical energy
output.
SCADA (Supervisory Control and Data Acquisition)
A system used to monitor and control industrial processes,
including PV power plants.
GCR (Ground Coverage Ratio)
The ratio of the area covered by PVmodules to the total available
land area.
Backtracking
A strategy used by solar trackers to avoid self-shading by
adjusting their position based on topographic conditions.
Availability or Uptime
The proportion of time that a system or component is operational
and functional.
DC Capacity
The total power output of a PV systemmeasured in direct current
(DC).
O&M (Operation & Maintenance)
Activities required to operate and maintain PV power plants to
ensure optimal performance.
IEA (International Energy Agency)
An organization that works to ensure reliable, affordable and
clean energy for its member countries.
PVLIB
An open-source library for simulating the performance of PV
systems.
Step Angle
The fixed angular increment by which a solar tracker adjusts its
position during each control action.
Modelled Angle
The theoretical angle calculated for a solar tracker based on solar
position equations and other inputs.
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